
This tutorial is going to show you how to install LEMP stack

(Nginx, MariaDB, and PHP8.1) on Ubuntu 22.04. A software

stack is a set of software tools bundled together. LEMP stands

for Linux, Nginx (Engine-X), MariaDB/MySQL, and PHP, all

of which are open source and free to use.

It is the most common software stack that powers dynamic

websites and web applications.

Linux is the operating system.

Nginx is the web server.

MariaDB/MySQL is the database server.

PHP is the server-side scripting language responsible for

generating dynamic web pages.

Requirements

To follow this tutorial, you need an Ubuntu 22.04 OS running

on your local computer or on a remote server.

If you are looking for a virtual private server (VPS), I

recommend Kamatera VPS, which features:

30 days free trial.

Starts at $4/month (1GB RAM)

High-performance KVM-based VPS

How to Install LEMP Stack
on Ubuntu 22.04

Server/Desktop
Last Updated: September 15th, 2022 Xiao Guoan (Admin) 22

Comments Ubuntu
  



9 data centers around the world, including United States,

Canada, UK, Germany, The Netherlands, Hong Kong,

and Isreal.

Follow the tutorial linked below to create your Linux VPS

server at Kamatera.

How to Create a Linux VPS Server on Kamatera

Once you have a VPS running Ubuntu 22.04, follow the

instructions below.

And if you need to set up LEMP stack with a domain name, I

recommend buying domain names from NameCheap because

the price is low and they give whois privacy protection free for

life.

Step 1: Update Software Packages

Before we install the LEMP stack, it’s a good practice to

update the repository and software packages by running the

following commands on your Ubuntu 22.04 OS.

sudo apt update

sudo apt upgrade -y

Step 2: Install Nginx Web Server

Nginx is a high-performance web server and is very popular

these days. It also can be used as a reverse proxy and caching

server. Enter the following command to install Nginx Web

server.

sudo apt install nginx

After it’s installed, we can enable Nginx to auto-start at boot

time by running the following command.

sudo systemctl enable nginx

Then start Nginx with this command:

sudo systemctl start nginx

Now check out its status.

sudo systemctl status nginx

Output:

● nginx.service - A high performance w
eb server and a reverse proxy server

 Loaded: loaded (/lib/systemd/syst

em/nginx.service; enabled; vendor pres

et: enabled)

 Active: active (running) since Fr

i 2022-04-10 14:11:43 UTC; 3s ago

 Docs: man:nginx(8)

 Process: 8533 ExecStartPre=/usr/sb

in/nginx -t -q -g daemon on; master_pr

ocess on; (code=exited, status=0/SUCCE

SS)

 Process: 8545 ExecStart=/usr/sbin/

nginx -g daemon on; master_process on;

(code=exited, status=0/SUCCESS)

 Main PID: 8549 (nginx)

 Tasks: 3 (limit: 9451)

 Memory: 3.9M

 CGroup: /system.slice/nginx.servi

ce

 ├─8549 nginx: master proc
ess /usr/sbin/nginx -g daemon on; mast

er_process on;

 ├─8550 nginx: worker proc
ess

 └─8551 nginx: worker proc
ess

“Enabled” indicates that auto-start at boot time is enabled and

we can see that Nginx is running. You can also see how much

RAM Nginx is using from the output. If the above command

doesn’t immediately quit after running. You need to press “q”

to make it quit.

Check Nginx version.

nginx -v

Output:

nginx version: nginx/1.18.0 (Ubuntu)

Now type in the public IP address of your Ubuntu 22.04 server

in the browser address bar. You should see the “Welcome to

Nginx” Web page, which means Nginx Web server is running

properly. If you are installing LEMP on your local Ubuntu

22.04 computer, then type 127.0.0.1 or localhost in the

browser address bar.

If the connection is refused or failed to complete, there might

be a firewall preventing incoming requests to TCP port 80. If

you are using iptables firewall, then you need to run the

following command to open TCP port 80.

sudo iptables -I INPUT -p tcp --dport

80 -j ACCEPT

If you are using the UFW firewall, then run this command to

open TCP port 80.

sudo ufw allow http

Finally, we need to make www-data (Nginx user) as the

owner of web directory. By default, it’s owned by the root user.

sudo chown www-data:www-data /usr/shar

e/nginx/html -R

Step 3: Install MariaDB Database

Server

MariaDB is a drop-in replacement for MySQL. It is developed

by former members of MySQL team who are concerned that

Oracle might turn MySQL into a closed-source product. Enter

the following command to install MariaDB on Ubuntu 22.04.

sudo apt install mariadb-server mariad

b-client

After it’s installed, MariaDB server should be automatically

started. Use systemctl to check its status.

systemctl status mariadb

Output:

● mariadb.service - MariaDB 10.6.7 dat
abase server

 Loaded: loaded (/lib/systemd/syst

em/mariadb.service; enabled; vendor pr

eset: enabled)

 Active: active (running) since Fr

i 2022-04-10 14:19:16 UTC; 18s ago

 Docs: man:mysqld(8)

 https://mariadb.com/kb/e

n/library/systemd/

 Main PID: 9161 (mysqld)

 Status: "Taking your SQL requests

now..."

 Tasks: 31 (limit: 9451)

 Memory: 64.7M

 CGroup: /system.slice/mariadb.ser

vice

 └─9161 /usr/sbin/mysqld

Hint: If the above command doesn’t immediately quit

after running. You need to press “q” to make it quit.

If it’s not running, start it with this command:

sudo systemctl start mariadb

To enable MariaDB to automatically start at boot time, run

sudo systemctl enable mariadb

Now run the post-installation security script.

sudo mysql_secure_installation

When it asks you to enter MariaDB root password, press

Enter key as the root password isn’t set yet.

Don’t switch to unix_socket authentication because

MariaDB is already using unix_socket authentication.

Don’t change the root password, because you don’t need

to set root password when using unix_socket

authentication.

Next, you can press Enter to answer all remaining questions,

which will remove anonymous user, disable remote root login

and remove test database. This step is a basic requirement for

MariaDB database security. (Notice that Y is capitalized, which

means it is the default answer.)

By default, the MaraiDB package on Ubuntu uses

unix_socket to authenticate user login, which basically

means you can use username and password of the OS to log

into MariaDB console. So you can run the following command

to log in without providing MariaDB root password.

sudo mariadb -u root

To exit, run

exit;

Check MariaDB server version information.

mariadb --version

As you can see, we have installed MariaDB 10.6.7.

mariadb Ver 15.1 Distrib 10.6.7-MariaD

B, for debian-linux-gnu (x86_64) using

EditLine wrapper

Step 4: Install PHP8.1

PHP8.1 is included in Ubuntu 22.04 repository and has a minor

performance improvement over PHP8.0. Enter the following

command to install PHP8.1 and some common extensions.

sudo apt install php8.1 php8.1-fpm php

8.1-mysql php-common php8.1-cli php8.1

-common php8.1-opcache php8.1-readline

php8.1-mbstring php8.1-xml php8.1-gd p

hp8.1-curl

PHP extensions are commonly needed for content management

systems (CMS) like WordPress. For example, if your

installation lacks php8.1-xml, then some of your WordPress

site pages may be blank and you can find an error in Nginx

error log like:

PHP message: PHP Fatal error: Uncaugh

t Error: Call to undefined function xm

l_parser_create()

Installing these PHP extensions ensures that your CMS runs

smoothly. Now start php8.1-fpm.

sudo systemctl start php8.1-fpm

Enable auto-start at boot time.

sudo systemctl enable php8.1-fpm

Check status:

systemctl status php8.1-fpm

Sample output:

● php8.1-fpm.service - The PHP 8.1 Fas
tCGI Process Manager

 Loaded: loaded (/lib/systemd/syst

em/php8.1-fpm.service; enabled; vendor

pr>

 Active: active (running) since Fr

i 2022-04-10 14:40:26 UTC; 12s ago

 Docs: man:php-fpm8.1(8)

 Process: 21019 ExecStartPost=/usr/

lib/php/php-fpm-socket-helper install

 /ru>

 Main PID: 21012 (php-fpm8.1)

 Status: "Processes active: 0, idl

e: 2, Requests: 0, slow: 0, Traffic: 0

req>

 Tasks: 3 (limit: 9451)

 Memory: 9.4M

 CGroup: /system.slice/php8.1-fpm.

service

 ├─21012 php-fpm: master p
rocess (/etc/php/8.1/fpm/php-fpm.conf)

 ├─21017 php-fpm: pool www
 └─21018 php-fpm: pool www

If the above command doesn’t immediately quit after running.

You need to press “q” to make it quit.

Step 5: Create an Nginx Server Block

An Nginx server block is like a virtual host in Apache. We will

not use the default server block because it’s inadequate to run

PHP code and if we modify it, it becomes a mess. So remove

the default symlink in sites-enabled directory by

running the following command. (It’s still available as

/etc/nginx/sites-available/default.)

sudo rm /etc/nginx/sites-enabled/defau

lt

Then use a command-line text editor like Nano to create a new

server block file under /etc/nginx/conf.d/ directory.

sudo nano /etc/nginx/conf.d/default.co

nf

Paste the following text into the file. The following snippet will

make Nginx listen on IPv4 port 80 and IPv6 port 80 with a

catch-all server name.

server {

 listen 80;

 listen [::]:80;

 server_name _;

 root /usr/share/nginx/html/;

 index index.php index.html index.htm

index.nginx-debian.html;

 location / {

 try_files $uri $uri/ /index.php;

 }

 location ~ \.php$ {

 fastcgi_pass unix:/run/php/php8.1-

fpm.sock;

 fastcgi_param SCRIPT_FILENAME $doc

ument_root$fastcgi_script_name;

 include fastcgi_params;

 include snippets/fastcgi-php.conf;

 }

 # A long browser cache lifetime can s

peed up repeat visits to your page

 location ~* \.(jpg|jpeg|gif|png|webp

|svg|woff|woff2|ttf|css|js|ico|xml)$ {

 access_log off;

 log_not_found off;

 expires 360d;

 }

 # disable access to hidden files

 location ~ /\.ht {

 access_log off;

 log_not_found off;

 deny all;

 }

}

Save and close the file. (To save a file in Nano text editor, press

Ctrl+O, then press Enter to confirm. To exit, press

Ctrl+X.)

Then test Nginx configurations.

sudo nginx -t

If the test is successful, reload Nginx.

sudo systemctl reload nginx

Step 6: Test PHP

To test PHP-FPM with Nginx Web server, we need to create a

info.php file in the webroot directory.

sudo nano /usr/share/nginx/html/info.p

hp

Paste the following PHP code into the file.

<?php phpinfo(); ?>

Save and close the file. Now in the browser address bar, enter

server-ip-address/info.php. Replace sever-ip-

address with your actual IP. If you follow this tutorial on

your local computer, then type 127.0.0.1/info.php or

localhost/info.php.

You should see your server’s PHP information. This means

PHP scripts can run properly with Nginx web server.

Step 7: Improve PHP Performance

The default PHP configurations

(/etc/php/8.1/fpm/php.ini) are made for servers with

very few resources (like a 256MB RAM server). To improve

web application performance, you should change some of

them.

We can edit the PHP config file (php.ini), but it’s a good

practice to create a custom PHP config file, so when you

upgrade to a new version of PHP8.1, your custom

configuration will be preserved.

sudo nano /etc/php/8.1/fpm/conf.d/60-c

ustom.ini

In this file, add the following lines.

; Maximum amount of memory a script ma

y consume. Default is 128M

memory_limit = 512M

; Maximum allowed size for uploaded fi

les. Default is 2M.

upload_max_filesize = 20M

; Maximum size of POST data that PHP w

ill accept. Default is 2M.

post_max_size = 20M

; The OPcache shared memory storage si

ze. Default is 128

opcache.memory_consumption=256

; The amount of memory for interned st

rings in Mbytes. Default is 8.

opcache.interned_strings_buffer=32

Save and close the file. Then reload PHP8.1-FPM for the

changes to take effect.

sudo systemctl reload php8.1-fpm

OPcache improves the performance of PHP applications by

caching precompiled bytecode. You can view OPcache stats

via the info.php page. Below is a before and after

comparison on one of my servers.

Before

After

As you can see, before applying the custom PHP configuration,

the RAM allocated to OPcache is almost used up. After

applying the custom PHP configurations, OPcache is able to

use more RAM for caching precompiled bytecode.

Congrats! You have successfully installed Nginx, MariaDB,

and PHP8.1 on Ubuntu 22.04. For your server’s security, you

should delete info.php file now to prevent hackers from

seeing it.

sudo rm /usr/share/nginx/html/info.php

Troubleshooting Tip

If you encounter errors, you can check the Nginx error log

(/var/log/nginx/error.log) to find out what’s wrong.

Nginx Automatic Restart

If for any reason your Nginx process is killed, you need to run

the following command to restart it.

sudo systemctl restart nginx

Instead of manually typing this command, we can make Nginx

automatically restart by editing the nginx.service systemd

service unit. To override the default systemd service

configuration, we create a separate directory.

sudo mkdir -p /etc/systemd/system/ngin

x.service.d/

Then create a file under this directory.

sudo nano /etc/systemd/system/nginx.se

rvice.d/restart.conf

Add the following lines in the file, which will make Nginx

automatically restart 5 seconds after a failure is detected. The

default value of RetartSec is 100ms, which is too small.

Nginx may complain that “start request repeated too quickly” if

RestartSec is not big enough.

[Service]

Restart=always

RestartSec=5s

Save and close the file. Then reload systemd for the changes to

take effect.

sudo systemctl daemon-reload

To check if this would work, kill Nginx with:

sudo pkill nginx

Then check Nginx status. You will find Nginx automatically

restarted.

systemctl status nginx

MariaDB Automatic Start

By default, MariaDB is configured to automatically restart on-

abort (/lib/systemd/system/mariadb.service).

However, if your server runs out of memory (oom) and

MariaDB is killed by the oom killer, it won’t automatically

restart. We can configure it to restart no matter what happens.

Create a directory to store custom configurations.

sudo mkdir -p /etc/systemd/system/mari

adb.service.d/

Create a custom config file.

sudo nano /etc/systemd/system/mariadb.

service.d/restart.conf

Add the following lines in the file.

[Service]

Restart=always

RestartSec=5s

Save and close the file. Then reload systemd for the changes to

take effect.

sudo systemctl daemon-reload

Next Steps

As always, if you found this post useful, then subscribe to our

free newsletter to get more tips and tricks. You can also install

WordPress on top of the LEMP stack to create your own

website or blog.

Install WordPress on Ubuntu 22.04 with Nginx,

MariaDB, PHP8.1 (LEMP)

Related Nginx tutorials:

How to Fix Common Nginx Web Server Errors

Backup is important in case of hacking, data center disasters,

etc. You should have a backup strategy for your server.

Back Up and Restore MariaDB Databases From the

Command line

Use Duplicati to Back Up Files on Debian, Ubuntu,

Linux Mint

Linux Server Performance Tuning and Monitoring

Easily Boost Ubuntu Network Performance by Enabling

TCP BBR

What is HTTP/2 and How to Enable it on Nginx

Linux Server Performance Monitoring with Netdata

(2022)

Take care

Rate this tutorial

[Total: 79 Average: 4.7]

You may also like:

How to
Instal…

How to
Instal…

How to
Instal…

How to
Instal…

How to
Instal…

How to
Instal…

How to
Instal…

Install
Proje…

